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Abstract
We show that the hard-square lattice gas with activity z = −1 has a number
of remarkable properties. We conjecture that all the eigenvalues of the transfer
matrix are roots of unity. They fall into groups (‘strings’) evenly spaced
around the unit circle, which have interesting number-theoretic properties. For
example, the partition function on an M × N lattice with periodic boundary
condition is identically 1 when M and N are coprime. We provide evidence for
these conjectures from analytical and numerical arguments.

PACS number: 05.50.+q

1. Introduction

The hard-square model is a well-known model of two-dimensional statistical mechanics [1, 2].
It describes a classical gas of particles on the square lattice, with the restriction that particles
may not be on adjacent sites. The activity z is the Boltzmann weight per particle. One can think
of the particles as hard squares with area twice that of a lattice plaquette. The squares are placed
with their centres on a lattice site and their corners at the four adjacent sites. The restriction
amounts to not allowing the squares to overlap, although they can touch. The particles/
squares do not interact, except via this hard core. The partition function Z for the hard-square
model is then simply

Z =
∑

n

A(n)zn, (1)

where A(n) is the number of allowed configurations with n particles. Combinatorialists would
describe A(n) for an M × N lattice as the number of M × N matrices with n entries 1 and the
remaining zero, such that no row or column contains two consecutive nonzero entries.

Despite its simple definition, the hard-square model has a number of interesting properties
[3]. In this paper, we discuss the fascinating structure present for the special case z = −1. We
will present substantial analytic and numerical evidence that when z = −1, the eigenvalues
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of the transfer matrix with periodic boundary conditions are all roots of unity. Moreover, for
an M × N lattice with periodic boundary conditions in both directions, we find Z = 1 when
M and N are coprime.

There are a number of reasons why it is interesting to study the hard-square model at
negative activity, even though the model has negative Boltzmann weights.

First, gases with hard cores are generically expected to exhibit a phase transition in the
Yang–Lee universality class at some negative value of z [4, 5]. For the hard-square model,
this transition takes place at z = zc ≈ −0.1. Thus our z = −1 results are describing the
regime ‘past’ this transition. This regime is very poorly understood, even though it should
be described by an integrable field theory [6] (the Yang–Lee conformal field theory with a
perturbation of opposite sign than usual). In this regime there are level crossings as z is
decreased past zc [7], making a field-theory analysis difficult.

Second, the hard-square model is not known to be integrable for any values of z except
for the trivial cases z = 0 and z = ∞. We thus do not know the origin of the behaviour
discovered here, although the degeneracies of the levels and other results we describe below
do hint that there are symmetries yet to be uncovered. Hopefully such symmetries will be
useful in understanding the hard-square model for values of z other than −1.

Third, gases with negative activity have been shown rigorously to be equivalent to
branched polymers in two dimensions higher [8], and lattice animals in one dimension higher
[5]. More precisely, the partition function of the lattice gas at negative z is the generating
function for branched-polymer configurations.

Fourth is that the partition function of z = −1 lattice gases arises very naturally in the
study of an interesting class of quantum models with supersymmetry [9]. The simplest such
model consists of interacting fermions hopping on a lattice, subject to the constraint that they
cannot occupy adjacent sites. The partition function of the classical hard-core model on the
same lattice at z = −1 is the Witten index of this quantum theory, and as such gives a lower
bound on the number of ground states of the theory. Thus the hard-square partition function at
z = −1 is the Witten index for this supersymmetric model on the square lattice. We will discuss
this and other two-dimensional supersymmetric lattice fermions in a companion paper [10].

Finally, we believe that the results described in this paper alone justify the study of
this model: we know of no other non-trivial model of two-dimensional statistical mechanics
whose transfer matrix obey the intriguing properties described below. For example, the hard-
hexagon model (the analogous model on the triangular lattice) is integrable, but numerical
results indicate that for no value of z do its transfer-matrix eigenvalues become roots of unity.

In section 2 we define the transfer matrix used to obtain these results. Readers interested
in the results can safely skip most of this and proceed to section 3, where our analytic and
numeric results for the partition function of the hard-square model at z = −1 are described.

2. Transfer matrix

It is convenient to study the hard-square model by using its transfer matrix. For simplicity,
we will consider periodic boundary conditions, although much of what we say in this paper
applies to open boundary conditions as well.

The dimension of the transfer matrix DN is the number of allowed configurations along
a circle with N sites. We index these configurations by an integer i = 1 . . . DN ; each
configuration i with p particles is specified by the p integers (i1, i2, . . . , ip), which give the
locations of the particles in this configuration. The hard core means that ir �= is, is ±1(mod N)

for any r or s. The number of configurations around a circle is found by diagonalizing the
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Table 1. Characteristic polynomials of the transfer matrices TN . The roots of this polynomial give
the partition function for an M × N lattice with periodic boundary conditions, as in (7).

N DN PN(x)

1 1 x − 1
2 3 (x2 + 1)(x − 1)

3 4 (x3 − 1)(x − 1)

4 7 (x4 − 1)(x2 − 1)(x − 1)

5 11 (x5 + 1)2(x − 1)

6 18 (x6 − 1)2(x3 − 1)(x2 + 1)(x − 1)

7 29 (x14 + 1)2(x − 1)

8 47 (x10 − 1)4(x4 − 1)(x2 − 1)(x − 1)

9 76 (x18 − 1)2(x9 − 1)4(x3 − 1)(x − 1)

10 123 (x14 − 1)5(x8 − 1)5(x5 − 1)2(x2 + 1)(x − 1)

11 199 (x55 − 1)2(x22 + 1)4(x − 1)

12 322 (x24 − 1)2(x18 − 1)6(x12 − 1)12(x6 − 1)2(x4 − 1)(x3 − 1)(x2 − 1)(x − 1)

13 521 (x91 − 1)4(x26 − 1)4(x13 + 1)4(x − 1)

14 843 (x28 − 1)4(x22 − 1)7(x16 − 1)28(x14 − 1)2(x10 − 1)7(x7 + 1)4(x2 + 1)(x − 1)

15 1364 (x60 − 1)6(x45 − 1)18(x15 − 1)12(x5 + 1)2(x3 − 1)(x − 1)

transfer matrix
(1

√
y√

y 0

)
for moving from one site to the next. The contribution to DN of

configurations with p particles is the coefficient of yp in

DN(y) =
(

1 +
√

1 + 4y

2

)N

+

(
1 − √

1 + 4y

2

)N

.

This generating function obeys the recursion relation

DN(y) = DN−1(y) + yDN−2(y).

The total number of configurations allowed with any p is DN ≡ DN(1). For example, D1 = 1
(coming from the configuration with no particles) and D2 = 3 (one configuration with no
particles, and two with one particle; because of the hard-core two particles cannot be on two
consecutive lattice sites). Thus this sequence of DN goes as 1, 3, 4, 7, 11, 18, . . . ; see table 1.
These are called Lucas numbers, and obey the same recursion relation as do Fibonacci numbers.
If desired one can enumerate the configurations for any N iteratively by this sort of approach.
For example, the number of lattice configurations with two consecutive fixed sites empty D00

N

are the Fibonacci numbers 1, 1, 2, 3, 5, . . . ; the number with one of those two sites occupied
is D0x

N = D00
N−1.

Consider two configurations i, j having pi and pj particles, respectively. These two
configurations (each around a circle) are allowed to be next to each other in the full two-
dimensional model if ir �= js for all r and s. The transfer matrix TN acts on a vector space
C

DN ; each basis element vi of this vector space corresponds to a configuration i, and has one in
the ith place and zeroes otherwise. The partition function with periodic boundary conditions
in both directions is then

Z(M,N) = tr(TN)M. (2)

For the hard-square model, if ir = js for some r and s, then the transfer matrix entry Tij = 0.
If the two configurations are allowed next to each other, then

(TN)ij = z(pi+pj )/2 i allowed next to j. (3)

If z is negative, by convention we take the positive sign of the square root. The transfer matrix
is not unique, but will yield the same partition function for any exponent λpi + (1 − λ)pj ; the
above definition makes the matrix symmetric.
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Since the boundary conditions are periodic, the model has a translation symmetry. The
translation generator acts on the vector space C

DN as well, taking a configuration with particles
at (ii , i2, . . . , ip) to the configuration (ii +1, i2+1, . . . , ip+1) where all locations are interpreted
mod N. Thus T N = 1, and the eigenvalues t of T obey tN = 1. It is easy to verify that
[TN, T ] = 0. The transfer matrix therefore breaks into blocks TN(t) acting on the eigenstates
of T with eigenvalue t. Working in this basis makes numerical computations more tractable,
reducing the sizes of the matrices involved by roughly a factor of N. (Eventually this does not
help much, because DN grows exponentially.)

An eigenstate of T with eigenvalue t can be formed from each vi via

V[i](t) = (vi + t−1T vi + t−2T 2vi + · · · + t−(N−1)T N−1vi)
√
Ni/N,

where Ni is the smallest integer which has T Ni vi = vi . The normalization is chosen so that
V∗

[i] · V[i] = 1. For example, the state with no particles has Ni = 1, while the state i with
particles at (2, 4, . . . , N) for N even has Ni = 2. The state V[i](t) is nonzero only if tNi = 1.
Even though the transfer matrix does not conserve the number of particles, T does, so the states
V[i](t) have a fixed number of particles pi . Obviously any state vj which obeys vj = T rvi for
some integer r results in V[j ] = t rV[i]. Thus to give a complete (but not over-complete) set of
states we must choose just one particular i in each of these sets.

Let us first examine the action of the transfer matrix in the sectors with t �= 1. The
simplest state in these sectors is the one-particle state, which we denote as [1] (the translation-
invariant state with no particles is nonzero only in the t = 1 sector). The transfer matrix takes
a one-particle state with a particle on the rth site to a linear combination of all states which do
not have a particle in the (r)th place. Using this, we see that the matrix element

(TN)[1][1] = z(t + t2 + · · · + tN−1) = −z,

where we used
∑N−1

k=0 t k = 0. For general matrix elements, we need the function τ([i]; t) =∑p

r=1 t ir for each state [i], where as before the configuration i has particles at (i1, i2, . . . , ip).
Then

(TN)[i][1](t �= 1) = −z(pi+1)/2

√
Ni

N
τ([i]; t)

while (TN)[1][i](t) = (TN)[i][1](1/t). Each term in these matrix elements arises when
configurations are forbidden to be next to each other. To get the general matrix elements,
the idea is likewise to see which configurations are forbidden. The end result is related to the
product τ([i]; t)τ ([j ]; 1/t), but to not overcount forbidden configurations, each term must
have coefficient 1. Precisely, by using tN = 1 rewrite the product as

τ([i]; t)τ ([j ]; 1/t) =
N−1∑
k=0

ak([i], [j ])tk.

Then we have

(TN)[i][j ](t �= 1) = −z(pi+pj )/2

√
NiNj

N

N−1∑
k=0

θ(ak([i], [j ]))tk (4)

where θ(a) = 1 − δa0, i.e. θ(0) = 0 and is 1 otherwise. Note that if z is real and positive,
TN is Hermitean. In the case of interest here z is not, but if desired one can redefine TN(t)

without changing its eigenvalues to make it symmetric.
Similar arguments give TN(t = 1):

(TN)[i][j ](t = 1) = z(pi+pj )/2

√
NiNj

N

(
N −

N−1∑
k=0

θ(ak([i], [j ]))

)
(5)
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where the ak are defined from τ([i]; t)τ ([j ]; 1/t) as above. Note that when [i] is the
configuration with no particles, τ([i]; t) = 0 and so all the corresponding ak = 0 as well.

3. The partition function

We write the partition function in terms of the roots of the characteristic polynomial of the
transfer matrix TN defined in the previous section. The characteristic polynomial PN(x) is
defined as

PN(x) = det(x − TN). (6)

The partition function for an M × N lattice with periodic boundary conditions in both
directions is

Z(M,N) =
DN∑
i=1

(xi(N))M (7)

where the xi are the roots of PN(x). Because z is negative, the transfer matrix is not Hermitian;
a resulting complication we will discuss is that not all roots xi need be eigenvalues of TN .

Our main conjecture is that the roots xi(N) of the characteristic polynomial are all roots
of unity and for a given N can be grouped into ‘strings’. A string is a set of xi evenly
spaced around the unit circle. We find just two kinds of strings, which we denote S+ and
S−. The former are the roots xk = ei2πk/S for k = 0, 1, . . . , S − 1, and the latter are the
values xk = eiπ(2k+1)/S for k = 0, 1, . . . , S − 1. The existence of a string S± means that the
polynomial (xS ∓ 1) divides PN(x). Moreover, we find that all the values of S for all strings
for a given N share a divisor with N, except for a single 1+-string for every N.

The strong evidence for these conjectures comes from the numerical results presented in
table 1. We have checked up to N = 15 that these conjectures hold. Another result apparent
from this table is that det(TN) = 1, so PN(0) = (−1)DN . Additional numerical results for
N � 9 suggest that the roots of the characteristic polynomial for the transfer matrix with open
boundary conditions are also roots of unity. For simplicity we will focus here on periodic.

The reason why the roots of PN(x) are all of unit modulus is mystery to us; we do not
know any other lattice gases even at z = −1 which share this property. Despite substantial
effort, we have not found a formula for PN(x) for arbitrary N. However, one can exploit
these conjectures to better understand the string structure. We define the strings so that only
one kind of string is present for a given S and N. This means in PN(x) any occurrence of
(xS − 1)(xS + 1) is combined into (x2S − 1). Then we let n±

S (N) be the number of S±-strings
for a given N; our convention means that n+

S(N)n−
S (N) = 0. Since each polynomial PN is of

order xDN , we have∑
S

Sn±
S (N) = DN.

Another useful fact is that because
∑S

k=1 e2π ikM/S = 0 unless M is a multiple of S, only strings
with M a multiple of S contribute to Z(M,N). An S+-string contributes S, while an S−-string
contributes (−1)M/SS.

More about the string structure can be learned by exploiting modular invariance, the
symmetry of the model Z(M,N) = Z(N,M) under interchange of the two cycles of the
torus. A consequence is that knowing the PN(x) for all the N less than and equal to a given S
determines the numbers of S-strings n±

S (N) for all N.
Let us explain how to implement this recursive procedure. Since T1 = 1, the only string

for N = 1 is a single 1+-string, as apparent from table 1. Thus Z(M, 1) = 1, and by symmetry
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Z(1, N) = 1. Because only strings where M is a multiple of S contribute to Z(M,N), only
1-strings contribute to Z(1, N). Since Z(1, N) = 1, we have just a single 1+-string: n+

1(N) = 1
and n−

1 (N) = 0 for all N. This is apparent in table 1. Moving on to N = 2, we have D2 = 3
and since there is exactly one 1-string, there must be just one 2-string. By our conjecture that
PN(0) = (−1)DN , this must be a 2+-string, giving the result in the table. Thus

Z(2j − 1, 2) = 1, Z(4j − 2, 2) = −1, Z(4j, 2) = 3, j an integer � 1.

By symmetry, the same results hold for Z(2, N). Only 2-strings and 1-strings contribute to
Z(2, N), and we already know there is exactly one 1+-string for all N. The explicit expression
for Z(2, N) then tells us that

n+
2(4j) = 1, n−

2 (4j − 2) = 1, j an integer � 1,

with all other n2 = 0. In a similar fashion, one finds n+
3(3j) = 1 and n+

4(4j) = 1. These are
all apparent in table 1.

For N � 5, this procedure yields only part of PN uniquely. For N = 5, we know there
is one 1+-string, and no 2-, 3- or 4-strings. Since D5 = 11 and P5(0) = −1, this means
that there are either two 5+-strings or two 5−-strings. We do not have a general conjecture
which will distinguish between the two possibilities, so we must compute P5(x) explicitly.
As seen in table 1, there end up being two 5−-strings. Now we can use the symmetry under
interchange of M and N to see that n+

5(10j) = 2 and n−
5 (10j + 5) = 2. Likewise, to find that

there are two 6+-strings for N = 6, one needs to find P6(x) explicitly. This then results in
n+

6(6j) = 2. The general result is found by noting that for all strings with S � N, SnS(N) is
always a multiple of N. This means that if we were using a transfer matrix in the M-direction
instead, this contribution to the partition function would arise from nN(M) = SnS(N)/N

strings of length N. Using the results from table 1, this procedure can be applied to find
n+

7(28j) = n−
7 (14(2j +1)) = 4, n+

8(10j) = 5, n+
9(18j) = 6, n+

9(9(2j +1)) = 4, n+
10(14j) = 7

and so on.
Unfortunately, since DN increases exponentially with N, the strings with S < N make

only a relatively small contribution to the partition function. As is apparent from the table,
as N increases, the number of different types of strings with S � N increases. We have not
yet seen any pattern to these numbers, but we are hopeful that one may exist. The increasing
degeneracies (multiple roots at the same x) apparent in the table as N increases are an obvious
hint that there is some yet-undiscovered symmetry structure.

The conjecture that all values of S for a given N (except for a single 1+-string) share a
divisor with S means that

Z(M,N) = 1 when M and N are coprime.

This fact is apparent in table 2. For values of M and N which are not coprime, the partition
function grows with increasing M and N at a much smaller rate as generic statistical mechanical
systems. Since all the xi(N) have magnitude 1, the maximal value of Z(M,N) is the smaller
of DN or DM . DN grows exponentially in N, while Z(M,N) for generic values of z grows
exponentially in NM . Exponential growth in NM is of course the standard behaviour for
statistical-mechanical systems: it is the statement that the free energy is extensive (a notable
exception is systems with supersymmetry). In fact even for the analogous systems at z = −1,
the partition function grows exponentially with the volume. For example, for the same model
on the triangular lattice (the hard-hexagon model), our numerics indicate that the partition
function grows as Ztri ≈ (1.14)NM .

In this section we have been careful to refer to the xi(N) as the roots of the characteristic
polynomial PN(x), not as the eigenvalues of TN . The reason is that for N � 4, some of
these roots do not correspond to eigenvalues. The eigenvectors of a non-Hermitian transfer
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Table 2. The partition function Z(M, N) = Z(N, M) for M � 20, N � 15.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 −1 1 3 1 −1 1 3 1 −1 1 3 1 −1 1 3 1 −1 1 3
3 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1
4 1 3 1 7 1 3 1 7 1 3 1 7 1 3 1 7 1 3 1 7
5 1 1 1 1 −9 1 1 1 1 11 1 1 1 1 −9 1 1 1 1 11
6 1 −1 4 3 1 14 1 3 4 −1 1 18 1 −1 4 3 1 14 1 3
7 1 1 1 1 1 1 1 1 1 1 1 1 1 −27 1 1 1 1 1 1
8 1 3 1 7 1 3 1 7 1 43 1 7 1 3 1 7 1 3 1 47
9 1 1 4 1 1 4 1 1 40 1 1 4 1 1 4 1 1 76 1 1

10 1 −1 1 3 11 −1 1 43 1 9 1 3 1 69 11 43 1 −1 1 13
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 3 4 7 1 18 1 7 4 3 1 166 1 3 4 7 1 126 1 7
13 1 1 1 1 1 1 1 1 1 1 1 1 −51 1 1 1 1 1 1 1
14 1 −1 1 3 1 −1 −27 3 1 69 1 3 1 55 1 451 1 −1 1 73
15 1 1 4 1 −9 4 1 1 4 11 1 4 1 1 174 1 1 4 1 11

matrix (even one of determinant 1 like TN ) need not span the space of states if two of the roots
coincide. A simple example is the matrix A(b) = (1 b

0 1

)
. Both roots are 1, but for any b �= 0

it has only one eigenvector e1 ≡ (1
0

)
. The vector e0 ≡ (0

1

)
is linearly independent of v0, but

obeys A(b)e0 = e0 + (1 + b)e1. Acting repeatedly with A does not change the coefficient of
e0, but just continues to change the coefficient of the eigenvector e1. This is because matrices
A(b) and A(b′) commute; the associated conserved quantity is the coefficient of e0.

Despite this (interesting) complication, the partition function for periodic boundary
conditions in both directions can still be written in the familiar form (7); the sum is over
all roots, not just the eigenvalues. For example, for N = 5 and t = 1, the transfer matrix is

T5(t = 1) =


 1 i

√
5

√
5

i
√

5 −4 3i√
5 3i 2




where the states are in order of increasing particle number pi = 0, 1, 2. The characteristic
polynomial of this is (x − 1)(x + 1)2. There is only one eigenstate of eigenvalue −1; the
vector V0 ≡ (0, 1, i) is orthogonal to the eigenvectors but is not an eigenvector itself. Because
the coefficient of V0 is conserved as one acts with T5, the partition function with periodic
boundary conditions remains (7). This means that in this sector the partition function is
Z(M, 5)(t = 1) = −1 for M odd, and Z(M, 5)(t = 1) = 3 for M even. However, the matrix
elements of [T5(t = 1)]2 are not periodic in M like this. The partition function on a cylinder
with fixed boundary conditions on the ends will not be periodic; its magnitude will continue
to increase, roughly linearly in M.

Moreover, one can use this to find a family of matrices with the same roots xi as T5(t = 1).
If all the roots −1,−1, 1 were eigenvalues, the matrix [T5(t = 1)]2 would equal the identity.
Here Q ≡ [T5(t = 1)]2 − 1 is non-zero; it annihilates the eigenvectors and obeys Q2 = 0.
The characteristic polynomial of T5(t = 1) − λQ is independent of λ. When λ = 1/2, this
matrix has three eigenvectors instead of two. Analogous results follow for all N � 4. It is not
clear, however, if the presence of this nilpotent symmetry operator Q will help in the analysis
of the model.
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